• sitemap?dGfyS.xml
  • 首页




    《彩票充值送 | 【LMOI9】》深度解析:g1seo论坛61S

    时间:<2020-07-06 06:11:59 作者:4vseo软件f67 浏览量:9777

    The life of George Stephenson proves that notwithstanding the novelty and great importance of his improvements in steam transit, he did not "discover" these improvements. He did not discover that a floating embankment would carry a railway across Chat Moss, neither did he discover that the friction between the wheels of a locomotive and the rails would enable a train to be drawn by tractive power alone. Everything connected with his novel history shows that all of his improvements were founded upon a method of reasoning from principles and generally inductively. To say that he "discovered" our railway system, according to the ordinary construction of the term, would be to detract from his hard and well-earned reputation, and place him among a class of fortunate schemers, who can claim no place in the history of legitimate engineering.At this point will occur one of those mechanical problems which requires what may be called logical solution. The valve must be moved by the drop; there is no other moving mechanism available; the valve and drop must besides be connected, to insure coincident action, yet the valve requires to move when the drop is still. Proceeding inductively, it is clear that a third agent must be introduced, some part moved by the drop, which will in turn move the valve, but this intermediate agent so arranged that it may continue to move after the hammer-drop has stopped.

    Grinding, no doubt, if traced to the principles that lie at the bottom, is nothing more than a cutting process, in which the edges employed are harder than any material that can be made into cutters, the edges firmly supported by being imbedded into a mass as the particles of sand are in grindstones, or the particles of emery in emery wheels.

    A common angular-pointed drill is capable of withstanding a greater amount of strain upon its edges, and rougher use than any other cutting implement employed in machine fitting. The rigid support which the edges receive, and the tendency to press them to the centre, instead of to tear them away as with other tools, allows drills to be used when they are imperfectly shaped, improperly tempered, and even when the cutting edges are of unequal length.CHAPTER VI. ON THE NATURE AND OBJECTS OF MACHINERY.

    No computations, drawings, or demonstrations of any kind will be employed to relieve the mind of the reader from the care of remembering and a dependence on his own exertions. Drawings, constants, formul?, tables, rules, with all that pertains to computation in mechanics, are already furnished in many excellent books, which leave nothing to be added, and such books can be studied at the same time with what is presented here.It is best, when an apprentice thinks of entering an engineering establishment, to inquire of its character from disinterested persons who are qualified to judge of the facilities it affords. As a rule, every machine-shop proprietor imagines his own establishment to combine all the elements of an engineering business—and the fewer the facilities for learners, usually the more extravagant this estimate; so that opinions in the matter, [24] to be relied upon, should come from disinterested sources.

    Inherent or cooling strains in castings is much more intricate than shrinkage: it is, in fact, one of the most uncertain and obscure matters that pattern-makers and moulders have to contend with. Inherent strains may weaken castings, or cause them to break while cooling, or sometimes even after they are finished; and in many kinds of works such strains must be carefully guarded against, both in the preparation of designs and the arrangement of patterns, especially for wheels and pulleys with spokes, and for struts or braces with both ends fixed. The main difficulty resulting from cooling strains, however, is that of castings being warped and sprung; this difficulty is continually present in the foundry and machine-shop, and there is perhaps no problem in the whole range of mechanical manipulation of which there exists more diversity of opinion and practice than of means to prevent the springing of castings. This being the case, an apprentice can hardly hope for much information here. There is no doubt of springing and strains in castings being the result of constant causes that might be fully understood if it were not for the ever-changing conditions which exist in casting, both as to the form of pieces, the temperature and quality of metal, mode of cooling, and so on.Once, nearly all mechanical knowledge was of the class termed special, and shop manipulations were governed by empirical rules and the arbitrary opinions of the skilled; an apprentice entered a shop to learn a number of mysterious operations, which could not be defined upon principles, and only understood by special practice and experiment. The arrangement and proportions of mechanism were also determined by the opinions of the skilled, and like the manipulation of the shop, were often hid from the apprentice, and what he carried in his memory at the end of an apprenticeship was all that he had gained. The tendency of this was to elevate those who were the fortunate possessors of a strong natural capacity, and to depress the position of those less fortunate in the matter of mechanical "genius," as it was called. The ability to prepare proper designs, and to succeed in original plans, was attributed to a kind of intuitive faculty of the mind; in short, the mechanic arts were fifty years ago surrounded by a superstition of a different nature, but in its influences the same as superstition in other branches of knowledge.

    First. By combining two or more operations in one machine, the only objects gained are a slight saving in first cost, one frame answering for two or more machines, and a saving of floor room.

    CHAPTER XL. INVENTION.I am not aware that any one has defined what constitutes civil engineering, or mechanical engineering, as distinguished one from the other, nor is it assumed to fix any standard here [14] farther than to serve the purpose of explaining the sense in which the terms will be used; yet there seems to be a clear line of distinction, which, if it does not agree with popular use of the terms, at least seems to be furnished by the nature of the business itself. It will therefore be assumed that mechanical engineering relates to dynamic forces and works that involve machine motion, and comprehends the conditions of machine action, such as torsional, centrifugal, intermittent, and irregular strains in machinery, arising out of motion; the endurance of wearing surfaces, the constructive processes of machine-making and machine effect in the conversion of material—in short, agents for converting, transmitting, and applying power.Tempering may be called a mystery of the smith-shop; this operation has that attraction which characterises every process that is mysterious, especially such as are connected with, or belong to mechanical manipulation. A strange and perhaps fortunate habit of the mind is to be greatly interested in what is not well understood, and to disregard what is capable of plain demonstration.

    Machine motion is mainly rotary; and as rotary motion is accomplished by cylindrical parts such as shafts, bearings, pulleys and wheels, we find that the greater share of machine tools are directed to preparing cylindrical forms. If we note the area of the turned, bored and drilled surface in ordinary machinery, and compare with the amount of planed surface, we will find the former not less than as two to one in the finer class of machinery, and as three to one in the coarser class; from this may be estimated approximately the proportion of tools required for operating on cylindrical surfaces and plane surfaces; assuming the cutting tools to have the same capacity in the two cases, the proportion will be as three to one. This difference between the number of machines required for cylindrical and plane surfaces is farther increased, when we consider that tools act continually on cylindrical surfaces and intermittently on plane surfaces.I do not refer to questions of mechanical construction, although the remark might be true if applied in this sense, but to the kind of devices that may be best employed in certain cases.









    SifOs十堰SEO优化 400电话办理dwOj2n